Name: \qquad Date: \qquad

Water Displacement:

Finding the volume of regular and irregular objects

Goals:

- Determine the volume of an irregular-shaped object using the displacement method.
- Determine the volume of a regular object using the displacement method.
- Create a formula for finding the volume of a regular object.

Objective:
Students will create a formula to solve for the volume of a regular shaped object and make predictions using the water displacement method.

Materials:

- Graduated cylinder
- Regular shaped objects- 6 dice
- Irregular-shaped rock
- Ruler

Things to be Aware of:

1. Always make sure \qquad when reading the graduated cylinder.
2. Make sure the graduated cylinder is on a \qquad surface.
3. Meniscus: \qquad .
4. Always read the measurement at the \qquad of the meniscus.

Problem 1: Water Displacement- Irregular Object

We cannot take the measurement of this object and develop a formula to calculate the volume because of its irregular shape. In order to find the volume of an irregular object, we need to use the water displacement method.

Step 1: Fill the graduated cylinder to a specific volume. For this experiment, we will keep a starting volume of \qquad .

Step 2: Place the object in the graduated cylinder and wait for it to be fully submerged in the water.

Step 3: Make sure you are \qquad with the water and win then record the new volume of the water. \qquad

Step 4: Subtract the new volume from the starting volume to find the volume of the object. \qquad

Volume of a Regular Object:

This object is a similar size to the irregular object we just found the volume of using the water displacement method. Now, let's find the volume of this regular object to compare.

Prediction: The volume of the regular object will be \qquad the irregular object.

Step 1: Fill the graduated cylinder to 100 ml .

Step 2: Place the object in the graduated cylinder and wait for it to be fully submerged in the water.

Step 3: Make sure you are at eye level with the water and then record the new volume of the water. \qquad

Step 4: Subtract the new volume from the starting volume to find the volume of the object. \qquad

Let's Create a Formula!

The measurements of this regular object are:
Length=
Width=

Height=
And the volume=
Create a formula to find the volume of any regular object:

Problem 2: 2 Dice Displacement Method:

Step 1: Fill the graduated cylinder to 100 ml .

Step 2: Place the object in the graduated cylinder and wait for it to be fully submerged in the water.

Step 3: Make sure you are at eye level with the water and then record the new volume of the water. \qquad

Step 4: Subtract the new volume from the starting volume to find the volume of the object. \qquad
Prediction: The volume of this object will be \qquad .

2 Dice Formula Method:

Step 1: Find the measurements
Length=
Width=
Height=
Step 2: Calculate the volume using the formula

Length x Width x Height $=$ Volume

Was your prediction correct? \qquad .

Problem 3: 3 Dice Formula Method:

Step 1: Find the measurements
Length=
Width=
Height=
Step 2: Calculate the volume using the formula

Length x Width x Height $=$ Volume
Prediction: The volume of this object will be \qquad .

Step 1: Fill the graduated cylinder to 100 ml .

Step 2: Place the object in the graduated cylinder and wait for it to be fully submerged in the water.

Step 3: Make sure you are at eye level with the water and then record the new volume of the water. \qquad

Step 4: Subtract the new volume from the starting volume to find the volume of the object. \qquad

Was your prediction correct? \qquad .

Reflection: During this experiment we used two different methods to calculate the volume of the same object. Why might our calculations for water displacement not have been 100% accurate? \qquad
\qquad .

Review:

Methods for Finding Volume:

Regular object formula:

Water displacement:

