Name:_____

Date:

Water Displacement:

Finding the volume of regular and irregular objects

<u>Goals:</u>

- Determine the volume of an irregular-shaped object using the displacement method.
- Determine the volume of a regular object using the displacement method.
- Create a formula for finding the volume of a regular object.

Objective:

Students will create a formula to solve for the volume of a regular shaped object and make predictions using the water displacement method.

<u>Materials:</u>

- Graduated cylinder
- Regular shaped objects- 6 dice
- Irregular-shaped rock
- Ruler

Things to be Aware of:

1. Always make sure ______ when reading the graduated cylinder.

2. Make sure the graduated cylinder is on a ______ surface.

- 3. Meniscus:
- 4. Always read the measurement at the ______ of the meniscus.

Problem 1: Water Displacement- Irregular Object

We cannot take the measurement of this object and develop a formula to calculate the volume because of its irregular shape. In order to find the volume of an irregular object, we need to use the water displacement method.

<u>Step 1:</u> Fill the graduated cylinder to a specific volume. For this experiment, we will keep a starting volume of _____.

<u>Step 2:</u> Place the object in the graduated cylinder and wait for it to be fully submerged in the water.

<u>Step 3:</u> Make sure you are	with the water and
then record the new volume of the water.	

<u>Step 4</u>: Subtract the new volume from the starting volume to find the volume of the object.

Volume of a Regular Object:

This object is a similar size to the irregular object we just found the volume of using the water displacement method. Now, let's find the volume of this regular object to compare.

Prediction: The volume of the regular object will be _ the irregular object.

<u>Step 1:</u> Fill the graduated cylinder to 100 ml.

<u>Step 2:</u> Place the object in the graduated cylinder and wait for it to be fully submerged in the water.

<u>Step 3:</u> Make sure you are at eye level with the water and then record the new volume of the water.

<u>Step 4</u>: Subtract the new volume from the starting volume to find the volume of the object.

Let's Create a Formula!

The measurements of this regular object are:

Length=

Width=

Height=

And the volume=

Create a formula to find the volume of any regular object:

Problem 2: 2 Dice Displacement Method:

<u>Step 1:</u> Fill the graduated cylinder to 100 ml.

<u>Step 2</u>: Place the object in the graduated cylinder and wait for it to be fully submerged in the water.

<u>Step 3</u>: Make sure you are at eye level with the water and then record the new volume of the water.

<u>Step 4</u>: Subtract the new volume from the starting volume to find the volume of the object.

Prediction: The volume of this object will be _____

2 Dice Formula Method:

<u>Step 1</u>: Find the measurements

Length=

Width=

Height=

<u>Step 2:</u> Calculate the volume using the formula

Length x Width x Height = Volume

Was your prediction correct?

Problem 3: 3 Dice Formula Method:

<u>Step 1</u>: Find the measurements

Length=

Width=

Height=

<u>Step 2:</u> Calculate the volume using the formula

Length x Width x Height = Volume

Prediction: The volume of this object will be

Problem 3: 3 Dice Displacement Method:

<u>Step 1:</u> Fill the graduated cylinder to 100 ml.

<u>Step 2:</u> Place the object in the graduated cylinder and wait for it to be fully submerged in the water.

<u>Step 3:</u> Make sure you are at eye level with the water and then record the new volume of the water.

<u>Step 4</u>: Subtract the new volume from the starting volume to find the volume of the object.

Was your prediction correct? ______.

Reflection: During this experiment we used two different methods to calculate the volume of the same object. Why might our calculations for water displacement not have been 100% accurate?

<u>Review:</u>

Methods for Finding Volume:

Regular object formula:

Water displacement: